NBS Source
I'm a manufacturer

"construction vehicles"

141 results found

Sort by:

Showing 1-22 of 22

Sponsored
Steel: The obvious choice for midrise construction

Steel: The obvious choice for midrise construction

Trimet Building Products

Steel is a major and essential construction material, offering unique value and unmatched performance in many end uses. Steel is strong, safe, durable, versatile, resilient and cost-effective. Steel is sustainable, with the exceptional environmental advantages of being highly recycled and infinitely recyclable. Steel is tough and does not rot, spall, split or absorb moisture and is resistant to pests, unlike other building materials. And from an aesthetic or architectural viewpoint, steel structures can easily deliver creative design options and offer excellent value. Steel is the fabric of life.
Sponsored
THE BENEFITS OF STEEL VS. WOOD FOR MID-RISE BUILDING CONSTRUCTION

THE BENEFITS OF STEEL VS. WOOD FOR MID-RISE BUILDING CONSTRUCTION

Trimet Building Products

Sustainability, durability, fire resistance, structural performance and cost-effectiveness are some of the strongest reasons for using structural steel or cold-formed steel framing in mid-rise building construction. As a dependable, noncombustible material, steel-framed structures provide a wise investment for builders and the occupants who live and work in them. Steel structures provide long-term, consistent performance. • Steel framing will not rot, warp, split, crack or creep. • Steel framing is not vulnerable to termites. • Steel framing does not expand or contract with moisture content. • Steel framing is produced in strict accordance with national standards, with no regional variations. Steel is a noncombustible material and will not contribute to the spread of a fire. • Because steel is noncombustible, it reduces the fire risk to occupants, firefighters and property/business owners. Steel framing improves design efficiency, saves time, and reduces costs. • Steel framing provides a significantly greater strength-to-weight ratio than wood. • Steel framing allows for larger bays and wider frame spacing than wood construction. • Increased flexibility in bay spacing and framing layout maximizes usable floor space for owners and tenants. • Steel is typically fabricated off-site, reducing on-site labor, cycle time and construction waste. • Shorter construction time results in earlier occupancies and lower financing costs. Steel structures perform well during earthquakes and other extreme events. • Steel is a resilient material, with reserve strength and ductility that result in significant advantages in natural disasters such as hurricanes and earth- quakes, and in other extreme events like fire and blast. • Steel construction is engineered to provide a reliable, consistent load path. • Steel construction employs quality control and quality assurance procedures to ensure that the project requirements are met. Steel framing provides environmental benefits and complies with sustainable building standards. • Steel framing results in less scrap and job site waste than lumber. • Structural steel is continually recycled with a current recycling rate of 98 percent, meaning that these steels will still be in use hundreds of years from now, lessening impacts on future generations. • Steel, when recycled, loses none of its inherent properties and can be recycled into different products such as cars, bridges, cans, etc. • Steel can be used to comply with the requirements of sustainable design standards such as the International Green Construction Code (IgCC), ASHRAE Standard 189.1 (Standard for the Design of High-Performance Green Buildings Except Low-Rise Residential Buildings), and the National Green Building Standard (ICC-700). Steel can also provide credit points for green building rating systems like the USGBC’s LEED (Leadership in Energy and Environmental Design) and the Green Building Initiative’s ANSI/GBI-01 (Green Building Assessment Protocol for Commercial Buildings).  
Sponsored
vivaNext mass-transit terminal construction - Toronto, ON.

vivaNext mass-transit terminal construction - Toronto, ON.

Mapei Inc.

Faced with a tight schedule and challenging weather conditions, Belluz Group Ltd. turned to MAPEI for the range of high-end products and support that was needed to complete a new-build terminal project in the heart of Canada’s biggest city.
Sponsored
CSSBI SSF 20-14:
Recycled Content of Steel Building Products

CSSBI SSF 20-14: Recycled Content of Steel Building Products

Trimet Building Products

The construction industry is a vital part of the growth and success of a country. It is responsible for building the physical infrastructure that provides transportation and facilities for citizens, businesses, industries and institutions. Construction has a major influence on the economic wealth, societal well¬being and sustainability of the built environment. The Canadian construction industry employs more than 1.2 million people. In 2010 it accounted for 6% of Canada’s gross domestic product (GDP), with a total value of 73.8 billion dollars. From 2000 to 2010, the GDP from construction increased 42.7% whereas GDP for all industries increased 20.2%.(1) Construction also has a profound impact on our natural environment. In North America, the built environment accounts for approximately one third of all the greenhouse gas (GHG) emissions, as well as energy, water and materials consumption. Given the increased awareness of “green” construction, there is growing interest in using steel because of the major recycled content and recyclability attributes it provides to architects, engineers and specifiers in the construction industry. The steel industry, through the Canadian Sheet Steel Building Institute is committed to providing steel solutions that promote the use of sustainable materials in construction applications. This fact sheet provides an overview of the two main methods used to produce steel, and describes the recycled content of the steels used to manufacture building products such as roofing, cladding, decking, structural and non-structural framing and the many other construction products used in the industry. Once iron ore is extracted and refined into steel, its life never ends. This makes steel an ideal material to deploy in sustainable strategies for the construction industry. Today’s steel is produced using two technologies both of which require “old” (recycled scrap) steel to make “new” steel. The combination of these technologies enables Canadian steel mills the flexibility to produce a variety of steel grades for a wide range of product applications
Sponsored
St. Augustine’s  Roman Catholic Church Dundas, ON, Canada

St. Augustine’s Roman Catholic Church Dundas, ON, Canada

Mapei Inc.

St. Augustine’s Church is a magnificent Gothic-style church constructed in 1863. It was built to satisfy the needs of a small but ever-expanding congregation in Dundas, Ontario, after a spectacular fire destroyed the church of 1827. To protect the structural integrity of the construction, MAPEI products were used to waterproof the front foyer and provide crack isolation.
Sponsored
Slush Puppie Center

Slush Puppie Center

Mapei Inc.

MAPEI products and experience helped ensure smooth-as-ice construction of hockey arena
Sponsored
Residential Steel Roofing The Long Term Choice

Residential Steel Roofing The Long Term Choice

Trimet Building Products

Steel has been used in North American construction projects for more than 150 years and still remains one of the strongest, most durable and economical building materials available today. Although steel has been traditionally associated with high-rise buildings, bridge structures and commercial and industrial projects, it is rapidly emerging as the logical material of choice for residential construction. Cold formed sheet steel panels are lightweight, economical, easy to handle and represent a high quality alternative to traditional roofing materials. Environmental and economic considerations have prompted many residential homeowners to investigate alternative building materials and methods, and steel roofing panels have proven technical benefits as well as excellent recycling capabilities which make them an increasingly popular choice. This follows the long-time use of steel roofing in commercial construction where steel has built undisputable quality and performance records. 
Sponsored
Porsche Rive-Sud – Saint-Hubert, QC, Canada

Porsche Rive-Sud – Saint-Hubert, QC, Canada

Mapei Inc.

During construction of a luxury automotive dealership, MAPEI products were used for surface preparation, waterproofing, uncoupling protection, and tile and stone installation. High moisture content and a fast-approaching deadline were no match for these products, which produced award-winning results.
Sponsored
Sheet Steel Gauges and Thicknesses

Sheet Steel Gauges and Thicknesses

Trimet Building Products

Introduction Within the construction industry there is often confusion over gauges, gauge numbers and the related thickness. The industry has been trying to move away from gauge numbers, without complete success. The following information will show why sheet steel products should be specified to the decimal thickness.
Sponsored
Real Steel Cost Advantages – Consider. Choose. Challenge.

Real Steel Cost Advantages – Consider. Choose. Challenge.

Trimet Building Products

Start at the foundation where the loads imposed by a steel frame are up to 50% less than those of a concrete alternative. There is evidence in the field and through third-party case studies and comparative cost studies that steel building systems offer significant cost benefits over competitive building materials when the total cost of construction is considered.
Sponsored
CSSBI 21M-2017:
Standard for Steel Farm Roofing and Siding

CSSBI 21M-2017: Standard for Steel Farm Roofing and Siding

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote sound construction using safe building practices. This Standard is intended to further this objective by providing to buyers, manufacturers and installers of steel farm roofing and siding, information which can be used or adopted by reference where desired. The requirements contained herein are in accordance with accepted engineering principles, augmented by experience. They include recommendations covering steel thicknesses, minimum metallic coating designations, as well as design, manufacture and installation in general.
Sponsored
Army Hospital Features First-ever Fire Resistive, Blast Rated Curtain Wall that Meets DoD Antiterrorism Standards

Army Hospital Features First-ever Fire Resistive, Blast Rated Curtain Wall that Meets DoD Antiterrorism Standards

SAFTI FIRST

The Department of Defense (DoD) published the Unified Facilities Criteria (UFC) 4-010-01 Antiterrorism Standards for Buildings as a mandatory guideline to mitigate the threats of terrorism against buildings and ensure the safety of the individuals that inhabit them. It applies to all newly constructed DoD Components, DoD inhabited buildings, billeting and high-occupancy housing, as well as already inhabited buildings where the renovation costs are 50% or more than the value of the building (for a complete list, please see UFC 4-010-01 section 1.8).
Sponsored
LEEDv4 and STEEL

LEEDv4 and STEEL

Trimet Building Products

Designers and builders have long recognized steel for its strength, durability and functionality. An important aspect of steel’s story is its high recycled content and end-of-life recovery rate. Both attributes are recognized by the U.S. Green Building Council’s (USGBC) green building rating system, Leadership in Energy and Environmental Design (LEED), but steel construction products can contribute to many other LEED credits as well, either directly or indirectly. USGBC’s latest version, LEEDv4, includes a completely revised and expanded Materials and Resources section, with new credits in the areas of life-cycle assessment (LCA), environmental product declarations (EPDs), and overall product transparency
Sponsored
Casa Loma, Toronto

Casa Loma, Toronto

ACO Canada

Casa Loma is a Gothic Revival castle-style mansion and garden in midtown Toronto, Ontario, Canada, that is now a historic house museum and landmark. It was constructed from 1911 to 1914 as a residence for financier Sir Henry Pellatt.Part of the renovations carried out was improving the water management on the exterior terrace located at the back of the building. The requirement was for the stormwater to be collected and disposed of efficiently without creating an unsightly 3D grading of the terrace surface. Linear drainage was the natural selection.ACO KlassikDrain KS100 was chosen for its robustness and ability to withstand Canadian weather conditions. The perforated stainless steel grate will resist corrosion and it is AODA and heelproof compliant, important requirements for this public venue.
Sponsored
CSSBI SSF 19-05:
Explosion Venting for Steel Frame Buildings

CSSBI SSF 19-05: Explosion Venting for Steel Frame Buildings

Trimet Building Products

Executive Summary The aim of this fact sheet is to advocate an alternative solution for the Steel Industry in regards to restrictive code provisions for explosion venting that are now mandated by the Ontario Fire Code (OFC). Due to a September 2000 amendment of code provisions dealing with explosion venting in the OFC, explosion vent designs were required to be in conformance with NFPA 68, the National Fire Protection Association’s (NFPA) Guide for Venting of Deflagrations. NFPA 68 gives a prescriptive solution that has upper bound limits on size and mass of an explosion vent panel, which the Steel Industry finds are too small to be practical. The Canadian Steel Construction Council (CSCC) investigated this problem and identified an alternate design guideline from the Factory Mutual Insurance Company’s (FM) Property Loss Prevention Data Sheets, numbered 1-44 and entitled “Damage Limiting Construction”. FM’s 1-44 Data Sheets can be used to develop an alternate solution for explosion venting that exceed the size and mass limits of the NFPA 68 prescriptive solution, and can be submitted for approval under the Compliance Equivalency provisions in the OFC. With the introduction of an objective based National Building Code Canada (NBCC) in 2005 followed by Provincial code adoptions in 2006 it would be worthwhile to establish a precedent through the Compliance Equivalency provision in the OFC. Once a precedent setting case occurs, the “acceptable solution” or “compliance alternative” would go on record and aid in resolving subsequent proposals for Compliance Equivalency, and also support a future technical change in the OFC. The CSCC by way of this fact sheet would advocate this alternative solution for the Steel Industry when designing explosion vent panels in steel framed buildings.
Sponsored
WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

Trimet Building Products

According to certain “studies,” wood claims a smaller environmental footprint than any other major building material. However, a closer look at the facts reveals some significant inconsistencies with that claim. MYTH: Studies demonstrate that wood is a more sustainable material than steel. REALITY: The most-cited study contained numerous incorrect assumptions about steel, and it omitted wood impacts. • A study cited often by the wood industry was published by the Consortium for Research on Renewable Industrial Materials (CORRIM) and is based on outdated information. For example, it made incorrect assumptions about the quantity of steel needed for its comparisons. • Wood is typically a single-use material. At the end of its life, a building’s wood frame is typically landfilled or incinerated. This returns any stored carbon dioxide back into the atmosphere as either carbon dioxide or methane, shifting greenhouse gas burdens to future generations. • In comparison, steel is the world’s most recycled material. Steel construction products have a recycling rate of more than 90 percent, meaning that at the end of a steel building’s life, more than 90 percent of its steel is recycled into another steel product, using significantly less energy than was necessary to create the original product. A material that can be recycled continually over centuries with no loss in quality and that lowers the burden on future generations is the very definition of sustainability! MYTH: Wood is more sustainable than steel because it is a renewable building resource. REALITY: Being renewable is not the same as being sustainable. • The wood industry claims that for every tree cut down, one or more new trees are planted. However, the claim does not take into account that it will take decades before those saplings mature. In the meantime, the forest is depleted of the oxygen, water storage and filtration, wildlife habitat, global cooling, and other benefits provided by the mature tree. 1 • Trees are often harvested by clear-cutting, leaving large gaps in the forestland that also impact the plants and animal species left behind. MYTH: Wood is more sustainable than steel because wood construction products store carbon. REALITY: Carbon storage for construction products is temporary, only shifting impacts to future generations. • Carbon is sequestered in the fiber of trees, but that does not mean that wood buildings become large reservoirs of carbon that is stored indefinitely. Upon harvesting, the unused root and leaf systems immediately return their CO to the atmosphere by decay. For wood products, the reality is that carbon storage is also temporary and it is released back into the atmosphere at the end of the wood building’s life either by the demolition and subsequent decay of the wood or by incineration. • Ann Ingerson of The Wilderness Society states: “As a result of wood waste and decomposition, the carbon stored long-term in harvested wood products may be a small proportion of that originally stored in the standing trees―across the United States, approximately 1 percent may remain in products in use and 13 percent in landfills at 100 years post-harvest.” 2 2 Photo courtesy of the American Institute of Steel Construction Photo courtesy of SCS Global Services MYTH: All wood construction products are certified as being sustainably harvested. REALITY: The majority of forests in the U.S. do not meet the wood industry’s own sustainable harvesting standards. • Eighty-one percent of forests in the United States are not certified, 11 percent are Sustainable Forestry Initiative (SFI®)-certified, and seven percent are Forest Stewardship Council (FSC®)-certified.3 The sustainable harvest certification provided by the Sustainable Forestry Initiative has often been challenged as to whether it reaches the required threshold of sustainable forestry. SFI was created in 1994 by the paper and timber industry. A report on SFI by ForestEthics concludes in part: - “SFI is funded, promoted and staffed by the very paper and timber industry interests it claims to evaluate.”4 - “Of SFI’s 543 audits, up to the time of the report’s issuance, there were no major noncompliance issues related to soil erosion, clear-cut procedures, watershed issues, or chemical usage.”5 - “SFI-certified logging practices are having a disastrous impact on North American forests.”6 • In actuality, only seven percent of the forestland in the United States reaches the threshold of being considered sustainably managed. References 1 “Understanding Environmental Product Declarations (EPDs) for Wood (Current Problems and Future Possibilities),” The Sierra Club Forest Certification and Green Building Team, September 24, 2013. 2 Ingerson, Ann, “Carbon Storage Potential of Harvested Wood: Summary and Policy Implications,” The Wilderness Society, October 23, 2010, p. 1. 3 “Forest Certification Around the World: Georgia-Pacific, Sustainable Forestry and Certification,” Georgia-Pacific, 2014. 4 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 2. 5 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 9. 6 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 11.
Sponsored
Prepainted Sheet Steel: Taking on Canada’s Climate
for Decades

Prepainted Sheet Steel: Taking on Canada’s Climate for Decades

Trimet Building Products

Four Key Components Constitute Prefinished Sheet Steel Prefinished sheet steel for construction consists of four major components: the sheet steel itself, a metallic (zinc or aluminum-zinc alloy) coating, chemical pre-treatment and primer, and a top coat. Each performs an important role in providing designers with a high quality, aesthetic, cost competitive and corrosion-resistant material. The backbone of the system is sheet steel, an ideal material for covering large surface areas because of its economy and high strength-toweight ratio. Protection against the demanding Canadian environment is provided by the metallic coating, one of the most effective methods of protecting bare steel from corrosion. Both zinc and aluminum-zinc alloy provide a tough, non-porous coating
Sponsored
CSSBI 22M-2017:
Standard for Residential Steel Roofing

CSSBI 22M-2017: Standard for Residential Steel Roofing

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote safety and sound construction practices. This Standard is intended to assist specifiers, designers, buyers, manufacturers, and erectors of sheet steel cladding by providing information which can be adopted by reference where desired. The requirements contained herein are in accordance with sound engineering principles, augmented by experience. They include recommended minimum requirements for such factors as grade of steel, thickness, metallic coating designation, loading and deflections, as well as design, fabrication and erection in general. While the material is believed to be technically correct and in accordance with recognized practice at the time of publication it does not obviate the need to determine its suitability for a given situation. Neither the Canadian Sheet Steel Building Institute nor its members warrant or assume liability for the suitability of the material for any general or particular application. 
Sponsored
CSSBI 23M-2016:
Standard for Residential Steel Cladding

CSSBI 23M-2016: Standard for Residential Steel Cladding

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote safety and sound construction practices. This Standard is intended to assist specifiers, designers, buyers, manufacturers, and erectors of sheet steel cladding by providing information which can be adopted by reference where desired. The requirements contained herein are in accordance with sound engineering principles, augmented by experience. They include recommended minimum requirements for such factors as grade of steel, thickness, metallic coating designation, loading and deflections, as well as design, fabrication and erection in general. While the material is believed to be technically correct and in accordance with recognized practice at the time of publication it does not obviate the need to determine its suitability for a given situation. Neither the Canadian Sheet Steel Building Institute nor its members warrant or assume liability for the suitability of the material for any general or particular application. 
Sponsored
CSSBI 20M-2017:
Standard for Sheet Steel Cladding for Industrial, Commercial and Institutional Building Applications

CSSBI 20M-2017: Standard for Sheet Steel Cladding for Industrial, Commercial and Institutional Building Applications

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote safety and sound construction practices. This Standard is intended to assist specifiers, designers, buyers, manufacturers, and erectors of sheet steel cladding by providing information which can be adopted by reference where desired. This Standard replaces the previous edition dated November 2015. The requirements contained herein are in accordance with sound engineering principles, augmented by experience. They include recommended minimum requirements for such factors as grade of steel, thickness, metallic coating designation, loading and deflections, as well as design, fabrication and erection in general. While the material is believed to be technically correct and in accordance with recognized practice at the time of publication it does not obviate the need to determine its suitability for a given situation. Neither the Canadian Sheet Steel Building Institute nor its members warrant or assume liability for the suitability of the material for any general or particular application.
Sponsored
CSSBI SSF 26-07:
Steel Cladding - A Farmer's MVP (Most Valuable Product)

CSSBI SSF 26-07: Steel Cladding - A Farmer's MVP (Most Valuable Product)

Trimet Building Products

Steel’s versatility and durability have made it an ideal building material for various construction projects for the past 150 years. Over that time, steel has earned a welldeserved reputation for economy and proven performances with long life cycles. Combine these benefits with steel’s ability to be recycled and engineered for retrofits, and steel cladding undoubtedly will become the number one choice of building materials across all industries. Recently, the Canadian Sheet Steel Building Institute commissioned a non-biased third party, Strategic Research Associates, to examine the state of the Canadian farm. Specifically, the study examined farmers’ steel cladding purchasing habits and steel cladding usage over the past 10 years. The study queried 471 farms across Canada with 43 farms in British Columbia; 96 in Alberta; 96 in Saskatchewan/Manitoba (combined); 97 in Ontario; 96 in Quebec; and 43 in the Atlantic Provinces. The results are within ± 4.5 percentage points for complete representation of all Canadian farms and are as follows:
Sponsored
CSSBI SSF 18-10:
Sheet Steel Products and Pressure Treated Wood

CSSBI SSF 18-10: Sheet Steel Products and Pressure Treated Wood

Trimet Building Products

IntroductionSheet Steel Roong and SidingLightweight Steel FramingIsolate the Steel and Wood ComponentsAvoid Use of Pressure Treated WoodFastenersMany buildings will include wood members in applicationssuch as sill plates, splash boards, strapping, purlins, door orwindow bucks, and posts. In some of these end-uses it is arequirement that the wood be chemically treated (pressuretreated) to extend the service life.Designers and builders need to be aware that changes in theavailable wood perservatives may impact the durability ofany connected steel components or fasteners.Eective January 1, 2004 the Environmental ProtectionAgency (EPA) banned the use of Chromated CopperArsenate (CCA) as a preservative in treated lumber forresidential construction. This was done in an eort to reducethe use of chromate and arsenic thereby mitigating thepotential health and environmental problems. The woodpreservative industry has been switching to alternativewaterborne compounds including Sodium Borate (SBX),Alkaline Copper Quat (ACQ), Copper Azole (CBA-A and CA-B),and Ammoniacal Copper Zinc Arsenate (ACZA).Unfortunately, research has indicated that ACQ, CBA-A, CA-Band ACZA, the new generation copper-based products, aremore corrosive to galvanized steel than the former CCA.Since ACQ is becoming the predominant preservative in use,the discussions in this paper will refer to it exclusively.The purpose of this Fact Sheet is to convey the recommendations of the sheet steel industry for the application of steelproducts with ACQ pressure treated wood.

Showing 1-22 of 22

Feedback