NBS Source
I'm a manufacturer

"general"

68 results found

Sort by:

Showing 1-13 of 13

Sponsored
How To Series - Pre-finished Sheet Steel for Retrofit

How To Series - Pre-finished Sheet Steel for Retrofit

Trimet Building Products

Preface This How To Series publication is an educational tool intended to give guidance to anyone specifying sheetsteel building products. This particular publication deals with the retrofit of the building envelope utilizing sheet steel. This is a generic guide giving the basic details and should only supplement the specific recommendations or design guidance published by the manufacturer appropriate to their own products. The material presented in this publication has been prepared for the general information of the reader. While the material is believed to be technically correct and in accordance with recognized good practice at the time of publication, its should not be used without first securing competent advice with respect to its suitability for any specific application. Neither the Canadian Sheet Steel Building Institute norites Members warrant or assume liability for the suitability of the material for any general or particular use.
Sponsored
How to series: Light Gauge Steel Roofing and Siding

How to series: Light Gauge Steel Roofing and Siding

Trimet Building Products

Preface One of the objectives of the CSSBI and its members is the development of standards and technical publications that promote safety, performance and good practice. This "How To Series" of publications is an educational tool intended to give guidance to anyone specifying sheet steel building products. This particular publication is published as an aid to building owners as well as roofing and siding installers. It offers simple and practical recommendations for the selection, application and installation of light gauge steel cladding. This is a generic guide giving the basic details and should only supplement the specific recommendations or guidance published by the manufacturer appropriate to their own products. The views expressed in this guide are a collection of installation techniques and do not necessarily reflect those of all member companies of the CANADIAN SHEET STEEL BUILDING INSTITUTE. The material presented in this publication has been prepared for the general information of the reader. While the material is believed to be technically correct and in accordance with recognized good practice at the time of publication, it should not be used without first securing competent advice with respect to its suitability for any specific application. Neither the CANADIAN SHEET STEEL BUILDING INSTITUTE nor its Members warrant or assume liability for the suitability of this bulletin for any general or particular application.
Sponsored
CSSBI 22M-2017:
Standard for Residential Steel Roofing

CSSBI 22M-2017: Standard for Residential Steel Roofing

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote safety and sound construction practices. This Standard is intended to assist specifiers, designers, buyers, manufacturers, and erectors of sheet steel cladding by providing information which can be adopted by reference where desired. The requirements contained herein are in accordance with sound engineering principles, augmented by experience. They include recommended minimum requirements for such factors as grade of steel, thickness, metallic coating designation, loading and deflections, as well as design, fabrication and erection in general. While the material is believed to be technically correct and in accordance with recognized practice at the time of publication it does not obviate the need to determine its suitability for a given situation. Neither the Canadian Sheet Steel Building Institute nor its members warrant or assume liability for the suitability of the material for any general or particular application. 
Sponsored
CSSBI 23M-2016:
Standard for Residential Steel Cladding

CSSBI 23M-2016: Standard for Residential Steel Cladding

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote safety and sound construction practices. This Standard is intended to assist specifiers, designers, buyers, manufacturers, and erectors of sheet steel cladding by providing information which can be adopted by reference where desired. The requirements contained herein are in accordance with sound engineering principles, augmented by experience. They include recommended minimum requirements for such factors as grade of steel, thickness, metallic coating designation, loading and deflections, as well as design, fabrication and erection in general. While the material is believed to be technically correct and in accordance with recognized practice at the time of publication it does not obviate the need to determine its suitability for a given situation. Neither the Canadian Sheet Steel Building Institute nor its members warrant or assume liability for the suitability of the material for any general or particular application. 
Sponsored
CSSBI 20M-2017:
Standard for Sheet Steel Cladding for Industrial, Commercial and Institutional Building Applications

CSSBI 20M-2017: Standard for Sheet Steel Cladding for Industrial, Commercial and Institutional Building Applications

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote safety and sound construction practices. This Standard is intended to assist specifiers, designers, buyers, manufacturers, and erectors of sheet steel cladding by providing information which can be adopted by reference where desired. This Standard replaces the previous edition dated November 2015. The requirements contained herein are in accordance with sound engineering principles, augmented by experience. They include recommended minimum requirements for such factors as grade of steel, thickness, metallic coating designation, loading and deflections, as well as design, fabrication and erection in general. While the material is believed to be technically correct and in accordance with recognized practice at the time of publication it does not obviate the need to determine its suitability for a given situation. Neither the Canadian Sheet Steel Building Institute nor its members warrant or assume liability for the suitability of the material for any general or particular application.
Sponsored
CSSBI 21M-2017:
Standard for Steel Farm Roofing and Siding

CSSBI 21M-2017: Standard for Steel Farm Roofing and Siding

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote sound construction using safe building practices. This Standard is intended to further this objective by providing to buyers, manufacturers and installers of steel farm roofing and siding, information which can be used or adopted by reference where desired. The requirements contained herein are in accordance with accepted engineering principles, augmented by experience. They include recommendations covering steel thicknesses, minimum metallic coating designations, as well as design, manufacture and installation in general.
Sponsored
CSSBI SSF 38-12:
CSSBI Position Paper on CGSB Standards for Prefinished Sheet Steel Cladding

CSSBI SSF 38-12: CSSBI Position Paper on CGSB Standards for Prefinished Sheet Steel Cladding

Trimet Building Products

CSSBI Position Paper on CGSB Standards for Prefinished Sheet Steel Cladding The National Building Code of Canada 2010 includes references to two documents published by the Canadian General Standards Board (CGSB) dealing with prefinished sheet steel cladding. These documents are: • CAN/CGSB-93.3–M91 Prefinished Galvanized and Aluminum-Zinc Alloy Steel Sheet for Residential Use • CAN/CGSB-93.4–92 Galvanized Steel and Aluminum-Zinc Alloy Coated Steel Siding, Soffits and Fascia, Prefinished, Residential It is important to realize that there are no sheet steel products currently manufactured in Canada that meet the requirements contained in these CGSB standards. 
Sponsored
LEEDing with STEEL 2009

LEEDing with STEEL 2009

Trimet Building Products

Buildings have a profound impact on our natural environment, economy, health and productivity. In North America, the built environment accounts for approximately one-third of all greenhouse gas emissions, energy, water and material consumption and generates similiar proportions of pollution. Indoor air quality is regarded as one of the top environmental health risks today, affecting the well-being, productivity and performance of many people. As concerns increase about sustainability in building design and operation, there is a need to develop a framework for assessing and quantifying buildings so that questions such as, “What is sustainable design?” and “How green is this project?” can be addressed. In response to this, the Leadership in Energy and Environmental Design (LEED) green building rating system was developed to provide such a framework for North America. This document explores how the use of steel structures and components can contribute to achieving a LEED certificate for a building.
Sponsored
WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

Trimet Building Products

According to certain “studies,” wood claims a smaller environmental footprint than any other major building material. However, a closer look at the facts reveals some significant inconsistencies with that claim. MYTH: Studies demonstrate that wood is a more sustainable material than steel. REALITY: The most-cited study contained numerous incorrect assumptions about steel, and it omitted wood impacts. • A study cited often by the wood industry was published by the Consortium for Research on Renewable Industrial Materials (CORRIM) and is based on outdated information. For example, it made incorrect assumptions about the quantity of steel needed for its comparisons. • Wood is typically a single-use material. At the end of its life, a building’s wood frame is typically landfilled or incinerated. This returns any stored carbon dioxide back into the atmosphere as either carbon dioxide or methane, shifting greenhouse gas burdens to future generations. • In comparison, steel is the world’s most recycled material. Steel construction products have a recycling rate of more than 90 percent, meaning that at the end of a steel building’s life, more than 90 percent of its steel is recycled into another steel product, using significantly less energy than was necessary to create the original product. A material that can be recycled continually over centuries with no loss in quality and that lowers the burden on future generations is the very definition of sustainability! MYTH: Wood is more sustainable than steel because it is a renewable building resource. REALITY: Being renewable is not the same as being sustainable. • The wood industry claims that for every tree cut down, one or more new trees are planted. However, the claim does not take into account that it will take decades before those saplings mature. In the meantime, the forest is depleted of the oxygen, water storage and filtration, wildlife habitat, global cooling, and other benefits provided by the mature tree. 1 • Trees are often harvested by clear-cutting, leaving large gaps in the forestland that also impact the plants and animal species left behind. MYTH: Wood is more sustainable than steel because wood construction products store carbon. REALITY: Carbon storage for construction products is temporary, only shifting impacts to future generations. • Carbon is sequestered in the fiber of trees, but that does not mean that wood buildings become large reservoirs of carbon that is stored indefinitely. Upon harvesting, the unused root and leaf systems immediately return their CO to the atmosphere by decay. For wood products, the reality is that carbon storage is also temporary and it is released back into the atmosphere at the end of the wood building’s life either by the demolition and subsequent decay of the wood or by incineration. • Ann Ingerson of The Wilderness Society states: “As a result of wood waste and decomposition, the carbon stored long-term in harvested wood products may be a small proportion of that originally stored in the standing trees―across the United States, approximately 1 percent may remain in products in use and 13 percent in landfills at 100 years post-harvest.” 2 2 Photo courtesy of the American Institute of Steel Construction Photo courtesy of SCS Global Services MYTH: All wood construction products are certified as being sustainably harvested. REALITY: The majority of forests in the U.S. do not meet the wood industry’s own sustainable harvesting standards. • Eighty-one percent of forests in the United States are not certified, 11 percent are Sustainable Forestry Initiative (SFI®)-certified, and seven percent are Forest Stewardship Council (FSC®)-certified.3 The sustainable harvest certification provided by the Sustainable Forestry Initiative has often been challenged as to whether it reaches the required threshold of sustainable forestry. SFI was created in 1994 by the paper and timber industry. A report on SFI by ForestEthics concludes in part: - “SFI is funded, promoted and staffed by the very paper and timber industry interests it claims to evaluate.”4 - “Of SFI’s 543 audits, up to the time of the report’s issuance, there were no major noncompliance issues related to soil erosion, clear-cut procedures, watershed issues, or chemical usage.”5 - “SFI-certified logging practices are having a disastrous impact on North American forests.”6 • In actuality, only seven percent of the forestland in the United States reaches the threshold of being considered sustainably managed. References 1 “Understanding Environmental Product Declarations (EPDs) for Wood (Current Problems and Future Possibilities),” The Sierra Club Forest Certification and Green Building Team, September 24, 2013. 2 Ingerson, Ann, “Carbon Storage Potential of Harvested Wood: Summary and Policy Implications,” The Wilderness Society, October 23, 2010, p. 1. 3 “Forest Certification Around the World: Georgia-Pacific, Sustainable Forestry and Certification,” Georgia-Pacific, 2014. 4 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 2. 5 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 9. 6 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 11.
Sponsored
CSSBI SSF 18-10:
Sheet Steel Products and Pressure Treated Wood

CSSBI SSF 18-10: Sheet Steel Products and Pressure Treated Wood

Trimet Building Products

IntroductionSheet Steel Roong and SidingLightweight Steel FramingIsolate the Steel and Wood ComponentsAvoid Use of Pressure Treated WoodFastenersMany buildings will include wood members in applicationssuch as sill plates, splash boards, strapping, purlins, door orwindow bucks, and posts. In some of these end-uses it is arequirement that the wood be chemically treated (pressuretreated) to extend the service life.Designers and builders need to be aware that changes in theavailable wood perservatives may impact the durability ofany connected steel components or fasteners.Eective January 1, 2004 the Environmental ProtectionAgency (EPA) banned the use of Chromated CopperArsenate (CCA) as a preservative in treated lumber forresidential construction. This was done in an eort to reducethe use of chromate and arsenic thereby mitigating thepotential health and environmental problems. The woodpreservative industry has been switching to alternativewaterborne compounds including Sodium Borate (SBX),Alkaline Copper Quat (ACQ), Copper Azole (CBA-A and CA-B),and Ammoniacal Copper Zinc Arsenate (ACZA).Unfortunately, research has indicated that ACQ, CBA-A, CA-Band ACZA, the new generation copper-based products, aremore corrosive to galvanized steel than the former CCA.Since ACQ is becoming the predominant preservative in use,the discussions in this paper will refer to it exclusively.The purpose of this Fact Sheet is to convey the recommendations of the sheet steel industry for the application of steelproducts with ACQ pressure treated wood.
Sponsored
CSSBI SSF 45-15:
Lightning and Steel Roofing

CSSBI SSF 45-15: Lightning and Steel Roofing

Trimet Building Products

When a homeowner is considering the purchase of a steel roof a common question is whether it will increase the risk of a lightning strike. After all, steel is highly conductive, just like the materials used in lightning rods, so doesn’t it stand to reason that the steel roof will attract lightning? The short answer is, NO, steel roofing will NOT increase the risk of a lightning strike in any way. For all intents and purposes, nothing ‘attracts’ lightning. Lightning occurs on too large of a scale to be influenced by small objects on the ground, including steel roofs. The location of the thunderstorm overhead alone determines where lightning will hit the ground. A lightning bolt that is several miles long, generated by a cloud that is more than 6 to 10 miles high, is not going to be influenced by an object the size of your house. 652 Bishop St. N., Unit 2A, Cambridge, Ontario N3H 4V6 • Tel.: (519) 650-1285 • Fax: (519) 650-8081 • www.cssbi.ca The descending stepped leader of a lightning bolt doesn’t ‘decide what to strike’ until it is very close to the ground. When a cloud-to-ground lightning channel is forming, it is going to strike the ground where the opposing charges are greatest, directly underneath the storm’s most electrically active region. If you are standing at that exact location, you will be hit, even if there’s no metal within miles! Conversely, if you are farther than 500 feet from that location, you could wave your golf club or umbrella high in the air, but you won’t draw the lightning away, even slightly, from striking where it’s going to strike. Steel does conduct electricity, but steel roofs don’t attract lightning or increase the probability of a lightning strike. Four factors affect the probability of a lightning strike: • Topography: a structure located on a mountain or hill has a higher probability of a strike than one in a field. • Structure size and height: a tall structure or one that covers a great deal of ground has a higher probability of a strike than a short or small building. • Relative location in relation to taller structures: a small, short building near a taller structure has a lower probability of strike than the taller structure. • Severity and frequency of thunderstorms in the structure’s vicinity. However, on occasion, lightning does strike a house. If your home were hit, the steel roofing would disperse the energy safely through the structure. Since steel roofing isn’t combustible or flammable, it’s a low risk and desirable roofing option where severe weather is concerned -- especially for lightning. For More Information For additional information on steel roofing or other sheet steel building products, visit our website at www.cssbi.ca.
Sponsored
THE BENEFITS OF STEEL VS. WOOD FOR MID-RISE BUILDING CONSTRUCTION

THE BENEFITS OF STEEL VS. WOOD FOR MID-RISE BUILDING CONSTRUCTION

Trimet Building Products

Sustainability, durability, fire resistance, structural performance and cost-effectiveness are some of the strongest reasons for using structural steel or cold-formed steel framing in mid-rise building construction. As a dependable, noncombustible material, steel-framed structures provide a wise investment for builders and the occupants who live and work in them. Steel structures provide long-term, consistent performance. • Steel framing will not rot, warp, split, crack or creep. • Steel framing is not vulnerable to termites. • Steel framing does not expand or contract with moisture content. • Steel framing is produced in strict accordance with national standards, with no regional variations. Steel is a noncombustible material and will not contribute to the spread of a fire. • Because steel is noncombustible, it reduces the fire risk to occupants, firefighters and property/business owners. Steel framing improves design efficiency, saves time, and reduces costs. • Steel framing provides a significantly greater strength-to-weight ratio than wood. • Steel framing allows for larger bays and wider frame spacing than wood construction. • Increased flexibility in bay spacing and framing layout maximizes usable floor space for owners and tenants. • Steel is typically fabricated off-site, reducing on-site labor, cycle time and construction waste. • Shorter construction time results in earlier occupancies and lower financing costs. Steel structures perform well during earthquakes and other extreme events. • Steel is a resilient material, with reserve strength and ductility that result in significant advantages in natural disasters such as hurricanes and earth- quakes, and in other extreme events like fire and blast. • Steel construction is engineered to provide a reliable, consistent load path. • Steel construction employs quality control and quality assurance procedures to ensure that the project requirements are met. Steel framing provides environmental benefits and complies with sustainable building standards. • Steel framing results in less scrap and job site waste than lumber. • Structural steel is continually recycled with a current recycling rate of 98 percent, meaning that these steels will still be in use hundreds of years from now, lessening impacts on future generations. • Steel, when recycled, loses none of its inherent properties and can be recycled into different products such as cars, bridges, cans, etc. • Steel can be used to comply with the requirements of sustainable design standards such as the International Green Construction Code (IgCC), ASHRAE Standard 189.1 (Standard for the Design of High-Performance Green Buildings Except Low-Rise Residential Buildings), and the National Green Building Standard (ICC-700). Steel can also provide credit points for green building rating systems like the USGBC’s LEED (Leadership in Energy and Environmental Design) and the Green Building Initiative’s ANSI/GBI-01 (Green Building Assessment Protocol for Commercial Buildings).  
Sponsored
COOL METAL ROOFS ARE ENERGY-EFFICIENT AND COST-EFFECTIVE

COOL METAL ROOFS ARE ENERGY-EFFICIENT AND COST-EFFECTIVE

Trimet Building Products

Buildings consume one-third of all energy and two-thirds of all electricity generated. Cool metal roofs can help reduce energy consumption by lowering cooling loads with their wide array of finishes, designs and colors.Cool metal roofs are energy-efficient. • The roof can have the greatest impact on the energy use of a building. On a typical summer afternoon, a light-colored, more reflective roof that reflects 80 percent of sunlight will stay about 310C (550F) cooler than a darker roof that reflects only 20 percent of sunlight, as reported by the Heat Island Group of the Lawrence Berkeley National Laboratory. • Cool metal roofs are an excellent option for commercial retrofit applications because they can be efficiently installed with above-sheathing ventilation, allowing heat to dissipate through the ridge vent in hot weather while acting as an insulating layer when it is cold. Metal roofs can result in as much as a 30 percent reduction in heat gain through the vented roof. • Metal roofs provide the optimal foundation for photovoltaic installations since the roof can be expected to last longer than the PV system it supports. • Wall and roof solar heat recovery systems can be integrated with steel cladding and used to provide air, water or process heating needs. • Cool metal roofing is available unpainted, with thermosetting coil-applied paint finishes, or with granular-coated surfaces. This family of roofing can achieve solar reflectance of over 70 percent, meeting the EPA Energy Star Roof Products Program performance criteria. • Emittance as high as 90 percent can be achieved for painted and granular-coated metal roofing. • Painted metal roofs retain 95 percent of their initial reflectance and emittance over time. They resist the growth of organic matter and shed dirt more readily than other materials. • Cool metal roofing can help to mitigate the Urban Heat Island Effect because of its high reflectance, which can reduce ambient air temperatures. Cool metal roofs are cost-effective. • Metal roofing has low life-cycle costs, making it the choice of many school, government, commercial, industrial and institutional building owners. • Due to its light weight per unit area, structural savings can be realized in a building when compared with heavier non-metal roofing alternatives. • For re-roofing projects, metal roofing can often be applied over the original roof, saving removal and disposal costs. • Metal roofing is fully recyclable when ultimately removed as part of building renovation or demolition, allowing it to credibly claim both recycled content and 100 percent recyclability by recognized definitions. The product’s recyclability also provides significant savings on construction removal and disposal costs.

Showing 1-13 of 13

Feedback