NBS Source
I'm a manufacturer

"piling services"

107 results found

Sort by:

Showing 1-7 of 7

Sponsored
Fire Resistive Curtain Wall Helps Hospital Meet Fire and Seismic Requirements

Fire Resistive Curtain Wall Helps Hospital Meet Fire and Seismic Requirements

SAFTI FIRST

Ratcliff was chosen as the architect to design the new three-story, 60,000 square foot San Jose Downtown Health Center that includes urgent care for adults and children, primary care for pediatric, OB/GYN and family medicine, behavioral health services, laboratory, pharmacy and radiology departments. Their design takes advantage of glazing’s ability to draw natural light from the outdoors to create a warm, pleasing atmosphere that promotes healing. Part of the hospital’s exterior curtain wall had to be fire rated for one hour and meet seismic requirements per SB 1953 as well.
Sponsored
Medical Center Maximizes Natural Daylight with Fire Rated Glass

Medical Center Maximizes Natural Daylight with Fire Rated Glass

SAFTI FIRST

Central to the new UC Davis Medical Center Surgery and Emergency Services Pavilion's design was a large skylight that allows natural light to vertically flow into the atrium area and other light wells throughout the building. However, they also wanted to let light flow horizontally into the adjacent hallways, rooms, etc. Because the walls in the atrium and light wells have to meet a 2-hour rating, Stantec Architects approached SAFTI FIRST® for a solution. Large portions of the 2 hour atrium and light well walls were made “transparent” with the use of SuperLite® II-XL 120 in GPX® Framing.
Sponsored
Steel: unparalleled fire safety

Steel: unparalleled fire safety

Trimet Building Products

Steel: unparalleled fire safety Life safety, and specifically fire protection, has been a primary concern of the building codes. Steel is a non-combustible material and consequently does not burn, provide an ignition source or add fuel load that would enable a fire to spread or grow into a catastrophic event. Steel does not melt at temperatures typically encountered in a building fire. Its non-combustibility and assembly fire ratings do not degrade over the lifecycle of a building. This provides a reduced fire risk, to workers and occupants, minimizes the impact on municipal fire services, decreases the reliance on sprinklers, and results in less property damage and collateral damage to adjacent buildings if a fire should ever occur. • Steel has a melting point of approximately 1,500ºC (2,700ºF). In a typical fire, such as in an office, residential or retail occupancy, the maximum temperature of a fully developed fire will not likely exceed a range of 800ºC to 900ºC (1,500ºF to 1,650ºF), though it could reach a peak of 1,100ºC (2,000ºF) for a short duration. • Building codes recognize the fact that buildings, designed with non-combustible materials like steel, pose less of a fire risk to the public than combustible systems, which are limited to six storeys in height in Canada and 25.9m (85 ft.) in the US. STEEL IS A NON-COMBUSTIBLE MATERIAL AND CONSEQUENTLY DOES NOT BURN, nor does it provide an ignition source or add fuel load that would enable a fire to spread or grow into a catastrophic event. “Changes in the building codes that allow combustible framing in taller and larger buildings have gone too far and it’s created a perfect storm that can quickly overwhelm the ability of the fire service to respond.” CHIEF STEVE LOHR, HAGERSTOWN (MD) FIRE DEPARTMENT
Sponsored
CSSBI SSF 33-11:
Wet Storage Staining of Galvanized and Galvannealed Steel Sheet

CSSBI SSF 33-11: Wet Storage Staining of Galvanized and Galvannealed Steel Sheet

Trimet Building Products

Introduction Most cold formed steel building products, whether painted or unpainted, are manufactured from a sheet steel material that has some form of metallic coating applied. This metallic coating can be zinc (galvanized), zinc-iron alloy (galvanneal) or a 55% aluminum-zinc alloy (GalvalumeTM). The metallic coating is available in a range of thicknesses to provide the degree of corrosion protection and service life required. One of the concerns expressed by installers relates to the presence of wet storage staining on the products, how this staining impacts the long term performance, and what can be done to remove it. The purpose of this fact sheet is to address some of these issues, allay some fears, and give guidance on proper storage techniques.
Sponsored
CSSBI SSF 18-10:
Sheet Steel Products and Pressure Treated Wood

CSSBI SSF 18-10: Sheet Steel Products and Pressure Treated Wood

Trimet Building Products

IntroductionSheet Steel Roong and SidingLightweight Steel FramingIsolate the Steel and Wood ComponentsAvoid Use of Pressure Treated WoodFastenersMany buildings will include wood members in applicationssuch as sill plates, splash boards, strapping, purlins, door orwindow bucks, and posts. In some of these end-uses it is arequirement that the wood be chemically treated (pressuretreated) to extend the service life.Designers and builders need to be aware that changes in theavailable wood perservatives may impact the durability ofany connected steel components or fasteners.Eective January 1, 2004 the Environmental ProtectionAgency (EPA) banned the use of Chromated CopperArsenate (CCA) as a preservative in treated lumber forresidential construction. This was done in an eort to reducethe use of chromate and arsenic thereby mitigating thepotential health and environmental problems. The woodpreservative industry has been switching to alternativewaterborne compounds including Sodium Borate (SBX),Alkaline Copper Quat (ACQ), Copper Azole (CBA-A and CA-B),and Ammoniacal Copper Zinc Arsenate (ACZA).Unfortunately, research has indicated that ACQ, CBA-A, CA-Band ACZA, the new generation copper-based products, aremore corrosive to galvanized steel than the former CCA.Since ACQ is becoming the predominant preservative in use,the discussions in this paper will refer to it exclusively.The purpose of this Fact Sheet is to convey the recommendations of the sheet steel industry for the application of steelproducts with ACQ pressure treated wood.
Sponsored
GT Yarmouth - Beattie passive - Retrofit

GT Yarmouth - Beattie passive - Retrofit

Intelligent Membranes Canada

An old block of apartments in Gt. Yarmouth getting a low carbon Retrofit for a higher, cleaner living standard and reduced energy bills. Passive Purple has been used externally on this huge scale block of apartments. with no margin for error and tricky details throughout, a liquid applied airtight membrane was the only way going forward. The building was being insulated externally and getting a whole new façade from render to aluminium panels. With the residents still inhabiting the building this had to be done quickly and easily with maximum results. Being a liquid applied airtight membrane, any cracks, gaps, and service penetration leaks in the existing building fabric quickly became thing of the past. That and the hundreds of Panel brackets being installed to support the new façade going on, this Retrofit had multiple penetrations and tricky details. Making good of the building fabric and awkward brackets with a near on impenetrable adhesion, Passive Purple made fast work of this great conversion, impossible for any other method. Being in liquid state on application, Passive Purple can be applied onto most/any surface (See data sheets for more information) and will find its way into all the unseeable tiny gaps and cracks all buildings will undoubtably have. Like this old pebble dashed façade, any rough, uneven and awkward areas are no longer an issue, our products simply flow into these areas. We also have the fibre reinforced Passive Purple brush, used on this job to prepare the brackets by filling the larger gaps between that of the bracket and the existing wall and also the large penetrating bolts. A huge win and demonstration of the power of liquid products by Intelligent Membranes.
Sponsored
WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

Trimet Building Products

According to certain “studies,” wood claims a smaller environmental footprint than any other major building material. However, a closer look at the facts reveals some significant inconsistencies with that claim. MYTH: Studies demonstrate that wood is a more sustainable material than steel. REALITY: The most-cited study contained numerous incorrect assumptions about steel, and it omitted wood impacts. • A study cited often by the wood industry was published by the Consortium for Research on Renewable Industrial Materials (CORRIM) and is based on outdated information. For example, it made incorrect assumptions about the quantity of steel needed for its comparisons. • Wood is typically a single-use material. At the end of its life, a building’s wood frame is typically landfilled or incinerated. This returns any stored carbon dioxide back into the atmosphere as either carbon dioxide or methane, shifting greenhouse gas burdens to future generations. • In comparison, steel is the world’s most recycled material. Steel construction products have a recycling rate of more than 90 percent, meaning that at the end of a steel building’s life, more than 90 percent of its steel is recycled into another steel product, using significantly less energy than was necessary to create the original product. A material that can be recycled continually over centuries with no loss in quality and that lowers the burden on future generations is the very definition of sustainability! MYTH: Wood is more sustainable than steel because it is a renewable building resource. REALITY: Being renewable is not the same as being sustainable. • The wood industry claims that for every tree cut down, one or more new trees are planted. However, the claim does not take into account that it will take decades before those saplings mature. In the meantime, the forest is depleted of the oxygen, water storage and filtration, wildlife habitat, global cooling, and other benefits provided by the mature tree. 1 • Trees are often harvested by clear-cutting, leaving large gaps in the forestland that also impact the plants and animal species left behind. MYTH: Wood is more sustainable than steel because wood construction products store carbon. REALITY: Carbon storage for construction products is temporary, only shifting impacts to future generations. • Carbon is sequestered in the fiber of trees, but that does not mean that wood buildings become large reservoirs of carbon that is stored indefinitely. Upon harvesting, the unused root and leaf systems immediately return their CO to the atmosphere by decay. For wood products, the reality is that carbon storage is also temporary and it is released back into the atmosphere at the end of the wood building’s life either by the demolition and subsequent decay of the wood or by incineration. • Ann Ingerson of The Wilderness Society states: “As a result of wood waste and decomposition, the carbon stored long-term in harvested wood products may be a small proportion of that originally stored in the standing trees―across the United States, approximately 1 percent may remain in products in use and 13 percent in landfills at 100 years post-harvest.” 2 2 Photo courtesy of the American Institute of Steel Construction Photo courtesy of SCS Global Services MYTH: All wood construction products are certified as being sustainably harvested. REALITY: The majority of forests in the U.S. do not meet the wood industry’s own sustainable harvesting standards. • Eighty-one percent of forests in the United States are not certified, 11 percent are Sustainable Forestry Initiative (SFI®)-certified, and seven percent are Forest Stewardship Council (FSC®)-certified.3 The sustainable harvest certification provided by the Sustainable Forestry Initiative has often been challenged as to whether it reaches the required threshold of sustainable forestry. SFI was created in 1994 by the paper and timber industry. A report on SFI by ForestEthics concludes in part: - “SFI is funded, promoted and staffed by the very paper and timber industry interests it claims to evaluate.”4 - “Of SFI’s 543 audits, up to the time of the report’s issuance, there were no major noncompliance issues related to soil erosion, clear-cut procedures, watershed issues, or chemical usage.”5 - “SFI-certified logging practices are having a disastrous impact on North American forests.”6 • In actuality, only seven percent of the forestland in the United States reaches the threshold of being considered sustainably managed. References 1 “Understanding Environmental Product Declarations (EPDs) for Wood (Current Problems and Future Possibilities),” The Sierra Club Forest Certification and Green Building Team, September 24, 2013. 2 Ingerson, Ann, “Carbon Storage Potential of Harvested Wood: Summary and Policy Implications,” The Wilderness Society, October 23, 2010, p. 1. 3 “Forest Certification Around the World: Georgia-Pacific, Sustainable Forestry and Certification,” Georgia-Pacific, 2014. 4 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 2. 5 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 9. 6 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 11.

Showing 1-7 of 7

Feedback