NBS Source
I'm a manufacturer

"mains gas fittings"

74 results found

Sort by:

Showing 1-6 of 6

Sponsored
CSSBI SSF 20-14:
Recycled Content of Steel Building Products

CSSBI SSF 20-14: Recycled Content of Steel Building Products

Trimet Building Products

The construction industry is a vital part of the growth and success of a country. It is responsible for building the physical infrastructure that provides transportation and facilities for citizens, businesses, industries and institutions. Construction has a major influence on the economic wealth, societal well¬being and sustainability of the built environment. The Canadian construction industry employs more than 1.2 million people. In 2010 it accounted for 6% of Canada’s gross domestic product (GDP), with a total value of 73.8 billion dollars. From 2000 to 2010, the GDP from construction increased 42.7% whereas GDP for all industries increased 20.2%.(1) Construction also has a profound impact on our natural environment. In North America, the built environment accounts for approximately one third of all the greenhouse gas (GHG) emissions, as well as energy, water and materials consumption. Given the increased awareness of “green” construction, there is growing interest in using steel because of the major recycled content and recyclability attributes it provides to architects, engineers and specifiers in the construction industry. The steel industry, through the Canadian Sheet Steel Building Institute is committed to providing steel solutions that promote the use of sustainable materials in construction applications. This fact sheet provides an overview of the two main methods used to produce steel, and describes the recycled content of the steels used to manufacture building products such as roofing, cladding, decking, structural and non-structural framing and the many other construction products used in the industry. Once iron ore is extracted and refined into steel, its life never ends. This makes steel an ideal material to deploy in sustainable strategies for the construction industry. Today’s steel is produced using two technologies both of which require “old” (recycled scrap) steel to make “new” steel. The combination of these technologies enables Canadian steel mills the flexibility to produce a variety of steel grades for a wide range of product applications
Sponsored
LEEDing with STEEL 2009

LEEDing with STEEL 2009

Trimet Building Products

Buildings have a profound impact on our natural environment, economy, health and productivity. In North America, the built environment accounts for approximately one-third of all greenhouse gas emissions, energy, water and material consumption and generates similiar proportions of pollution. Indoor air quality is regarded as one of the top environmental health risks today, affecting the well-being, productivity and performance of many people. As concerns increase about sustainability in building design and operation, there is a need to develop a framework for assessing and quantifying buildings so that questions such as, “What is sustainable design?” and “How green is this project?” can be addressed. In response to this, the Leadership in Energy and Environmental Design (LEED) green building rating system was developed to provide such a framework for North America. This document explores how the use of steel structures and components can contribute to achieving a LEED certificate for a building.
Sponsored
Cost Considerations for
Prepainted Sheet Steel Cladding

Cost Considerations for Prepainted Sheet Steel Cladding

Trimet Building Products

This Fact Sheet has been written to describe some of the factors that affect the cost of prepainted sheet steel cladding products. The most significant factors are: colour, paint system, order quantity, Fabricator's inventory and profile selection. Recognition of the impact of these factors can help you select a prepainted sheet steel cladding system to fit the aesthetic and durability requirements of your project, and still stay within a budget. 
Sponsored
Cincinnati Art Museum Renovation Features Transparent Stairwell

Cincinnati Art Museum Renovation Features Transparent Stairwell

SAFTI FIRST

When the Cincinnati Art Museum embarked on an $11 million renovation, the architects wanted the entrance and main stair to be as inviting as possible. Transparent, fire rated glazing from SAFTI FIRST® was a key component of the design solution. To maximize the vision area in door itself, SuperLite® II-XL 60 in GPX® Builders Series Temperature Rise full-lite doors. In some of the stairwell doors in less prominent locations, SAFTI FIRST® provided SuperLite® X-90 for the vision panels under 100 sq. inches.
Sponsored
Fire Rated Glass Helps SFPUC Building Achieve LEED Platinum

Fire Rated Glass Helps SFPUC Building Achieve LEED Platinum

SAFTI FIRST

The new San Francisco Public Utilities Commission Headquarters combines maximum daylighting and fire safety with a multi-story, fire rated glass stairwell from SAFTI FIRST. Dubbed as the "greenest building in North America," this Class A LEED Platinum office building features a transparent, 2-hour fire rated stairwell, situated prominently near the main entrance. SAFTI FIRST supplied SuperLite II-XL 120 in GPX Architectural Series Wall Framing and SuperLite II-XL 90 in GPX Builders Series Temperature Rise Door starting from the lobby all the way to the topmost floor.
Sponsored
WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

Trimet Building Products

According to certain “studies,” wood claims a smaller environmental footprint than any other major building material. However, a closer look at the facts reveals some significant inconsistencies with that claim. MYTH: Studies demonstrate that wood is a more sustainable material than steel. REALITY: The most-cited study contained numerous incorrect assumptions about steel, and it omitted wood impacts. • A study cited often by the wood industry was published by the Consortium for Research on Renewable Industrial Materials (CORRIM) and is based on outdated information. For example, it made incorrect assumptions about the quantity of steel needed for its comparisons. • Wood is typically a single-use material. At the end of its life, a building’s wood frame is typically landfilled or incinerated. This returns any stored carbon dioxide back into the atmosphere as either carbon dioxide or methane, shifting greenhouse gas burdens to future generations. • In comparison, steel is the world’s most recycled material. Steel construction products have a recycling rate of more than 90 percent, meaning that at the end of a steel building’s life, more than 90 percent of its steel is recycled into another steel product, using significantly less energy than was necessary to create the original product. A material that can be recycled continually over centuries with no loss in quality and that lowers the burden on future generations is the very definition of sustainability! MYTH: Wood is more sustainable than steel because it is a renewable building resource. REALITY: Being renewable is not the same as being sustainable. • The wood industry claims that for every tree cut down, one or more new trees are planted. However, the claim does not take into account that it will take decades before those saplings mature. In the meantime, the forest is depleted of the oxygen, water storage and filtration, wildlife habitat, global cooling, and other benefits provided by the mature tree. 1 • Trees are often harvested by clear-cutting, leaving large gaps in the forestland that also impact the plants and animal species left behind. MYTH: Wood is more sustainable than steel because wood construction products store carbon. REALITY: Carbon storage for construction products is temporary, only shifting impacts to future generations. • Carbon is sequestered in the fiber of trees, but that does not mean that wood buildings become large reservoirs of carbon that is stored indefinitely. Upon harvesting, the unused root and leaf systems immediately return their CO to the atmosphere by decay. For wood products, the reality is that carbon storage is also temporary and it is released back into the atmosphere at the end of the wood building’s life either by the demolition and subsequent decay of the wood or by incineration. • Ann Ingerson of The Wilderness Society states: “As a result of wood waste and decomposition, the carbon stored long-term in harvested wood products may be a small proportion of that originally stored in the standing trees―across the United States, approximately 1 percent may remain in products in use and 13 percent in landfills at 100 years post-harvest.” 2 2 Photo courtesy of the American Institute of Steel Construction Photo courtesy of SCS Global Services MYTH: All wood construction products are certified as being sustainably harvested. REALITY: The majority of forests in the U.S. do not meet the wood industry’s own sustainable harvesting standards. • Eighty-one percent of forests in the United States are not certified, 11 percent are Sustainable Forestry Initiative (SFI®)-certified, and seven percent are Forest Stewardship Council (FSC®)-certified.3 The sustainable harvest certification provided by the Sustainable Forestry Initiative has often been challenged as to whether it reaches the required threshold of sustainable forestry. SFI was created in 1994 by the paper and timber industry. A report on SFI by ForestEthics concludes in part: - “SFI is funded, promoted and staffed by the very paper and timber industry interests it claims to evaluate.”4 - “Of SFI’s 543 audits, up to the time of the report’s issuance, there were no major noncompliance issues related to soil erosion, clear-cut procedures, watershed issues, or chemical usage.”5 - “SFI-certified logging practices are having a disastrous impact on North American forests.”6 • In actuality, only seven percent of the forestland in the United States reaches the threshold of being considered sustainably managed. References 1 “Understanding Environmental Product Declarations (EPDs) for Wood (Current Problems and Future Possibilities),” The Sierra Club Forest Certification and Green Building Team, September 24, 2013. 2 Ingerson, Ann, “Carbon Storage Potential of Harvested Wood: Summary and Policy Implications,” The Wilderness Society, October 23, 2010, p. 1. 3 “Forest Certification Around the World: Georgia-Pacific, Sustainable Forestry and Certification,” Georgia-Pacific, 2014. 4 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 2. 5 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 9. 6 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 11.

Showing 1-6 of 6

Feedback