NBS Source
I'm a manufacturer

"industrial agricultural fittings"

100 results found

Sort by:

Showing 1-15 of 15

Sponsored
CSSBI 20M-2017:
Standard for Sheet Steel Cladding for Industrial, Commercial and Institutional Building Applications

CSSBI 20M-2017: Standard for Sheet Steel Cladding for Industrial, Commercial and Institutional Building Applications

Trimet Building Products

PREFACE One of the objectives of the Canadian Sheet Steel Building Institute is the development of product standards to promote safety and sound construction practices. This Standard is intended to assist specifiers, designers, buyers, manufacturers, and erectors of sheet steel cladding by providing information which can be adopted by reference where desired. This Standard replaces the previous edition dated November 2015. The requirements contained herein are in accordance with sound engineering principles, augmented by experience. They include recommended minimum requirements for such factors as grade of steel, thickness, metallic coating designation, loading and deflections, as well as design, fabrication and erection in general. While the material is believed to be technically correct and in accordance with recognized practice at the time of publication it does not obviate the need to determine its suitability for a given situation. Neither the Canadian Sheet Steel Building Institute nor its members warrant or assume liability for the suitability of the material for any general or particular application.
Sponsored
CSSBI SSF 20-14:
Recycled Content of Steel Building Products

CSSBI SSF 20-14: Recycled Content of Steel Building Products

Trimet Building Products

The construction industry is a vital part of the growth and success of a country. It is responsible for building the physical infrastructure that provides transportation and facilities for citizens, businesses, industries and institutions. Construction has a major influence on the economic wealth, societal well¬being and sustainability of the built environment. The Canadian construction industry employs more than 1.2 million people. In 2010 it accounted for 6% of Canada’s gross domestic product (GDP), with a total value of 73.8 billion dollars. From 2000 to 2010, the GDP from construction increased 42.7% whereas GDP for all industries increased 20.2%.(1) Construction also has a profound impact on our natural environment. In North America, the built environment accounts for approximately one third of all the greenhouse gas (GHG) emissions, as well as energy, water and materials consumption. Given the increased awareness of “green” construction, there is growing interest in using steel because of the major recycled content and recyclability attributes it provides to architects, engineers and specifiers in the construction industry. The steel industry, through the Canadian Sheet Steel Building Institute is committed to providing steel solutions that promote the use of sustainable materials in construction applications. This fact sheet provides an overview of the two main methods used to produce steel, and describes the recycled content of the steels used to manufacture building products such as roofing, cladding, decking, structural and non-structural framing and the many other construction products used in the industry. Once iron ore is extracted and refined into steel, its life never ends. This makes steel an ideal material to deploy in sustainable strategies for the construction industry. Today’s steel is produced using two technologies both of which require “old” (recycled scrap) steel to make “new” steel. The combination of these technologies enables Canadian steel mills the flexibility to produce a variety of steel grades for a wide range of product applications
Sponsored
Sheet Steel Gauges and Thicknesses

Sheet Steel Gauges and Thicknesses

Trimet Building Products

Introduction Within the construction industry there is often confusion over gauges, gauge numbers and the related thickness. The industry has been trying to move away from gauge numbers, without complete success. The following information will show why sheet steel products should be specified to the decimal thickness.
Sponsored
Glossary of Commonly Used Terms for Structural
Building Products

Glossary of Commonly Used Terms for Structural Building Products

Trimet Building Products

Introduction This Fact Sheet is written to provide assistance in understanding the engineering terms commonly used in the sheet steel building products industry. 
Sponsored
Care and Maintenance of Prefinished Sheet Steel
Building Products

Care and Maintenance of Prefinished Sheet Steel Building Products

Trimet Building Products

Introduction Prefinished sheet steel building products, such as wall and roof cladding, liner sheet, flashing, and associated items, have experienced an enviable growth record during the past twenty years or so. Coil coated prefinished sheet steel in a variety of colours and paint systems has greatly enhanced the appearance of thousands of industrial, commercial, institutional, recreational, residential and farm buildings, providing an economical, durable and attractive alternative to traditional materials. As with all materials, a little care and maintenance pays off handsomely in terms of longevity and repair costs. The recommendations which follow have been learned at first hand and represent the collective industry experience with thin-film paint systems applied to metallic coated sheet steel by the coil coating process. In this publication the term “thin-film paint system” refers to a modified silicone polyester or a fluorocarbon type having a coating thickness about 25µm. When the guidelines listed below have been observed, thin-film paint systems have been used successfully for all types of environments other than severe industrial atmospheres which require special consideration. The guidelines are not intended for barrier coatings, laminates, and new formulations which have different characteristics than the thin-film paint systems on which these guidelines are predicated. 
Sponsored
CSSBI SSF 19-05:
Explosion Venting for Steel Frame Buildings

CSSBI SSF 19-05: Explosion Venting for Steel Frame Buildings

Trimet Building Products

Executive Summary The aim of this fact sheet is to advocate an alternative solution for the Steel Industry in regards to restrictive code provisions for explosion venting that are now mandated by the Ontario Fire Code (OFC). Due to a September 2000 amendment of code provisions dealing with explosion venting in the OFC, explosion vent designs were required to be in conformance with NFPA 68, the National Fire Protection Association’s (NFPA) Guide for Venting of Deflagrations. NFPA 68 gives a prescriptive solution that has upper bound limits on size and mass of an explosion vent panel, which the Steel Industry finds are too small to be practical. The Canadian Steel Construction Council (CSCC) investigated this problem and identified an alternate design guideline from the Factory Mutual Insurance Company’s (FM) Property Loss Prevention Data Sheets, numbered 1-44 and entitled “Damage Limiting Construction”. FM’s 1-44 Data Sheets can be used to develop an alternate solution for explosion venting that exceed the size and mass limits of the NFPA 68 prescriptive solution, and can be submitted for approval under the Compliance Equivalency provisions in the OFC. With the introduction of an objective based National Building Code Canada (NBCC) in 2005 followed by Provincial code adoptions in 2006 it would be worthwhile to establish a precedent through the Compliance Equivalency provision in the OFC. Once a precedent setting case occurs, the “acceptable solution” or “compliance alternative” would go on record and aid in resolving subsequent proposals for Compliance Equivalency, and also support a future technical change in the OFC. The CSCC by way of this fact sheet would advocate this alternative solution for the Steel Industry when designing explosion vent panels in steel framed buildings.
Sponsored
Fire Rated Glass Adds Safety to Nanobioelectronics Clean Room

Fire Rated Glass Adds Safety to Nanobioelectronics Clean Room

SAFTI FIRST

The Joint School of Nanoscience & Nanoengineering within the Gateway University Research Park in Greensboro, North Carolina is a new 105,000 sf interdisciplinary research facility dedicated to academic and industrial research. To create an open, transparent lab design, SAFTI FIRST® provided SuperLite® II-XL 60 in GPX® Architectural Series Frames for the 60 minute walls.
Sponsored
WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

WHICH IS THE MORE SUSTAINABLE BUILDING MATERIAL - WOOD OR STEEL?

Trimet Building Products

According to certain “studies,” wood claims a smaller environmental footprint than any other major building material. However, a closer look at the facts reveals some significant inconsistencies with that claim. MYTH: Studies demonstrate that wood is a more sustainable material than steel. REALITY: The most-cited study contained numerous incorrect assumptions about steel, and it omitted wood impacts. • A study cited often by the wood industry was published by the Consortium for Research on Renewable Industrial Materials (CORRIM) and is based on outdated information. For example, it made incorrect assumptions about the quantity of steel needed for its comparisons. • Wood is typically a single-use material. At the end of its life, a building’s wood frame is typically landfilled or incinerated. This returns any stored carbon dioxide back into the atmosphere as either carbon dioxide or methane, shifting greenhouse gas burdens to future generations. • In comparison, steel is the world’s most recycled material. Steel construction products have a recycling rate of more than 90 percent, meaning that at the end of a steel building’s life, more than 90 percent of its steel is recycled into another steel product, using significantly less energy than was necessary to create the original product. A material that can be recycled continually over centuries with no loss in quality and that lowers the burden on future generations is the very definition of sustainability! MYTH: Wood is more sustainable than steel because it is a renewable building resource. REALITY: Being renewable is not the same as being sustainable. • The wood industry claims that for every tree cut down, one or more new trees are planted. However, the claim does not take into account that it will take decades before those saplings mature. In the meantime, the forest is depleted of the oxygen, water storage and filtration, wildlife habitat, global cooling, and other benefits provided by the mature tree. 1 • Trees are often harvested by clear-cutting, leaving large gaps in the forestland that also impact the plants and animal species left behind. MYTH: Wood is more sustainable than steel because wood construction products store carbon. REALITY: Carbon storage for construction products is temporary, only shifting impacts to future generations. • Carbon is sequestered in the fiber of trees, but that does not mean that wood buildings become large reservoirs of carbon that is stored indefinitely. Upon harvesting, the unused root and leaf systems immediately return their CO to the atmosphere by decay. For wood products, the reality is that carbon storage is also temporary and it is released back into the atmosphere at the end of the wood building’s life either by the demolition and subsequent decay of the wood or by incineration. • Ann Ingerson of The Wilderness Society states: “As a result of wood waste and decomposition, the carbon stored long-term in harvested wood products may be a small proportion of that originally stored in the standing trees―across the United States, approximately 1 percent may remain in products in use and 13 percent in landfills at 100 years post-harvest.” 2 2 Photo courtesy of the American Institute of Steel Construction Photo courtesy of SCS Global Services MYTH: All wood construction products are certified as being sustainably harvested. REALITY: The majority of forests in the U.S. do not meet the wood industry’s own sustainable harvesting standards. • Eighty-one percent of forests in the United States are not certified, 11 percent are Sustainable Forestry Initiative (SFI®)-certified, and seven percent are Forest Stewardship Council (FSC®)-certified.3 The sustainable harvest certification provided by the Sustainable Forestry Initiative has often been challenged as to whether it reaches the required threshold of sustainable forestry. SFI was created in 1994 by the paper and timber industry. A report on SFI by ForestEthics concludes in part: - “SFI is funded, promoted and staffed by the very paper and timber industry interests it claims to evaluate.”4 - “Of SFI’s 543 audits, up to the time of the report’s issuance, there were no major noncompliance issues related to soil erosion, clear-cut procedures, watershed issues, or chemical usage.”5 - “SFI-certified logging practices are having a disastrous impact on North American forests.”6 • In actuality, only seven percent of the forestland in the United States reaches the threshold of being considered sustainably managed. References 1 “Understanding Environmental Product Declarations (EPDs) for Wood (Current Problems and Future Possibilities),” The Sierra Club Forest Certification and Green Building Team, September 24, 2013. 2 Ingerson, Ann, “Carbon Storage Potential of Harvested Wood: Summary and Policy Implications,” The Wilderness Society, October 23, 2010, p. 1. 3 “Forest Certification Around the World: Georgia-Pacific, Sustainable Forestry and Certification,” Georgia-Pacific, 2014. 4 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 2. 5 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 9. 6 “SFI: Certified Greenwash – Inside the Sustainable Forestry Initiative’s Deceptive Eco-Label,” a report by ForestEthics, November 2010, p. 11.
Sponsored
CSSBI SSF 18-10:
Sheet Steel Products and Pressure Treated Wood

CSSBI SSF 18-10: Sheet Steel Products and Pressure Treated Wood

Trimet Building Products

IntroductionSheet Steel Roong and SidingLightweight Steel FramingIsolate the Steel and Wood ComponentsAvoid Use of Pressure Treated WoodFastenersMany buildings will include wood members in applicationssuch as sill plates, splash boards, strapping, purlins, door orwindow bucks, and posts. In some of these end-uses it is arequirement that the wood be chemically treated (pressuretreated) to extend the service life.Designers and builders need to be aware that changes in theavailable wood perservatives may impact the durability ofany connected steel components or fasteners.Eective January 1, 2004 the Environmental ProtectionAgency (EPA) banned the use of Chromated CopperArsenate (CCA) as a preservative in treated lumber forresidential construction. This was done in an eort to reducethe use of chromate and arsenic thereby mitigating thepotential health and environmental problems. The woodpreservative industry has been switching to alternativewaterborne compounds including Sodium Borate (SBX),Alkaline Copper Quat (ACQ), Copper Azole (CBA-A and CA-B),and Ammoniacal Copper Zinc Arsenate (ACZA).Unfortunately, research has indicated that ACQ, CBA-A, CA-Band ACZA, the new generation copper-based products, aremore corrosive to galvanized steel than the former CCA.Since ACQ is becoming the predominant preservative in use,the discussions in this paper will refer to it exclusively.The purpose of this Fact Sheet is to convey the recommendations of the sheet steel industry for the application of steelproducts with ACQ pressure treated wood.
Sponsored
Molson Brewery

Molson Brewery

ACO Canada

Located at the foot of the Cascade mountain range in Chilliwack, the brand-new Molson – Coors was inaugurated in 2019. It has the capacity to produce 300 million litres of beer a year. The brewery is equipped with advanced technologies for operational efficiency, and it is considered Molson’s most modern facility.The plant was designed with optimised equipment layouts that help reduce beer loss and wastage. Hygienic industrial drainage is a major component of the design and ACO drainage was selected for its proven performance.Benefits of ACO StainlessEasy to clean hygienic designStainless steel is highly resistant to corrosionHigh hydraulic efficiency for fast removal of surface waterACO’s experience in drainage for food processing environments
Sponsored
Residential Steel Roofing The Long Term Choice

Residential Steel Roofing The Long Term Choice

Trimet Building Products

Steel has been used in North American construction projects for more than 150 years and still remains one of the strongest, most durable and economical building materials available today. Although steel has been traditionally associated with high-rise buildings, bridge structures and commercial and industrial projects, it is rapidly emerging as the logical material of choice for residential construction. Cold formed sheet steel panels are lightweight, economical, easy to handle and represent a high quality alternative to traditional roofing materials. Environmental and economic considerations have prompted many residential homeowners to investigate alternative building materials and methods, and steel roofing panels have proven technical benefits as well as excellent recycling capabilities which make them an increasingly popular choice. This follows the long-time use of steel roofing in commercial construction where steel has built undisputable quality and performance records. 
Sponsored
Cost Considerations for
Prepainted Sheet Steel Cladding

Cost Considerations for Prepainted Sheet Steel Cladding

Trimet Building Products

This Fact Sheet has been written to describe some of the factors that affect the cost of prepainted sheet steel cladding products. The most significant factors are: colour, paint system, order quantity, Fabricator's inventory and profile selection. Recognition of the impact of these factors can help you select a prepainted sheet steel cladding system to fit the aesthetic and durability requirements of your project, and still stay within a budget. 
Sponsored
CSSBI SSF 26-07:
Steel Cladding - A Farmer's MVP (Most Valuable Product)

CSSBI SSF 26-07: Steel Cladding - A Farmer's MVP (Most Valuable Product)

Trimet Building Products

Steel’s versatility and durability have made it an ideal building material for various construction projects for the past 150 years. Over that time, steel has earned a welldeserved reputation for economy and proven performances with long life cycles. Combine these benefits with steel’s ability to be recycled and engineered for retrofits, and steel cladding undoubtedly will become the number one choice of building materials across all industries. Recently, the Canadian Sheet Steel Building Institute commissioned a non-biased third party, Strategic Research Associates, to examine the state of the Canadian farm. Specifically, the study examined farmers’ steel cladding purchasing habits and steel cladding usage over the past 10 years. The study queried 471 farms across Canada with 43 farms in British Columbia; 96 in Alberta; 96 in Saskatchewan/Manitoba (combined); 97 in Ontario; 96 in Quebec; and 43 in the Atlantic Provinces. The results are within ± 4.5 percentage points for complete representation of all Canadian farms and are as follows:
Sponsored
Steel and the Green Movement

Steel and the Green Movement

Trimet Building Products

Global warming and climate change are two terms found increasingly in headlines around the world. Initiatives such as the Kyoto Protocol have brought these issues to the forefront and provide a framework and objectives for reducing greenhouse gases (GHG). GHG are heat trapping gases, such as water vapour, carbon dioxide, or methane that absorb the earth’s heat and hinder it from being released into space. As levels of GHG build up in the atmosphere, a greenhouse effect takes place that warms the earth’s atmosphere and makes global climate change inevitable. A?itudes on environmental issues are changing worldwide. Developed nations are commi?ing to reducing GHG emissions to 5.2% below the 1990 baseline by 2012. Notably, Canada has commi?ed to reducing its GHG emissions to 6% below 1990 levels, which corresponds to a gap of 29.1% of where the nation is and where it wants to be. An ambitious undertaking, considering that Canada’s GHG emissions have been steadily on the rise over the years and in 2004 was actually 26.6% higher than 1990 levels. On a positive note, in the last two years emissions have started to decline, but there remains a long way still to go. =e quest for a greener Canada continues and helping to lead the way to a greener Canada is the nation’s steel industry, which is making great strides in reducing GHG emissions, conserving energy, and lessening impacts on our air, water, and land.
Sponsored
COOL METAL ROOFS ARE ENERGY-EFFICIENT AND COST-EFFECTIVE

COOL METAL ROOFS ARE ENERGY-EFFICIENT AND COST-EFFECTIVE

Trimet Building Products

Buildings consume one-third of all energy and two-thirds of all electricity generated. Cool metal roofs can help reduce energy consumption by lowering cooling loads with their wide array of finishes, designs and colors.Cool metal roofs are energy-efficient. • The roof can have the greatest impact on the energy use of a building. On a typical summer afternoon, a light-colored, more reflective roof that reflects 80 percent of sunlight will stay about 310C (550F) cooler than a darker roof that reflects only 20 percent of sunlight, as reported by the Heat Island Group of the Lawrence Berkeley National Laboratory. • Cool metal roofs are an excellent option for commercial retrofit applications because they can be efficiently installed with above-sheathing ventilation, allowing heat to dissipate through the ridge vent in hot weather while acting as an insulating layer when it is cold. Metal roofs can result in as much as a 30 percent reduction in heat gain through the vented roof. • Metal roofs provide the optimal foundation for photovoltaic installations since the roof can be expected to last longer than the PV system it supports. • Wall and roof solar heat recovery systems can be integrated with steel cladding and used to provide air, water or process heating needs. • Cool metal roofing is available unpainted, with thermosetting coil-applied paint finishes, or with granular-coated surfaces. This family of roofing can achieve solar reflectance of over 70 percent, meeting the EPA Energy Star Roof Products Program performance criteria. • Emittance as high as 90 percent can be achieved for painted and granular-coated metal roofing. • Painted metal roofs retain 95 percent of their initial reflectance and emittance over time. They resist the growth of organic matter and shed dirt more readily than other materials. • Cool metal roofing can help to mitigate the Urban Heat Island Effect because of its high reflectance, which can reduce ambient air temperatures. Cool metal roofs are cost-effective. • Metal roofing has low life-cycle costs, making it the choice of many school, government, commercial, industrial and institutional building owners. • Due to its light weight per unit area, structural savings can be realized in a building when compared with heavier non-metal roofing alternatives. • For re-roofing projects, metal roofing can often be applied over the original roof, saving removal and disposal costs. • Metal roofing is fully recyclable when ultimately removed as part of building renovation or demolition, allowing it to credibly claim both recycled content and 100 percent recyclability by recognized definitions. The product’s recyclability also provides significant savings on construction removal and disposal costs.

Showing 1-15 of 15

Feedback